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Abstract—The inevitable transition from physical ded-
icated hardware devices towards lightweight container-
ized reusable software modules with Network Function
Virtualization (NFV) introduces countless opportunities
while presenting several unprecedented challenges. Sat-
isfying NFV expectations in post-5G networks heavily
depends on the efficient placement of network services.
In this paper, after modeling the placement problem
and proposing the exact resolutions using Integer Linear
Programming (ILP) and Column Generation (CG), we
propose our deterministic placement solution, capable
of obtaining optimal results with the scalability of a
heuristic-grade approach. Our method is organized as a
Branch and Bound (BnB) structure, applying Artificial
Intelligence (AI) search strategies (especially A*) to
address the problem of network service placement. We
believe that it is suitable for a range of applications in
online placement scenarios, whether we concentrate
on the quality of the results or on the strict time
constraints. We are interested in the popular objective of
Service Acceptance (SA) maximization and have carried
out several extensive evaluations. The obtained results
confirm the effectiveness of our solution.

Index Terms—Network Function Virtualization, Net-
work Service Placement, Branch and Bound, Artificial
Intelligence.

I. Introduction

LEADING network operators adopted Software-Defined
Networking (SDN) and Network Function Virtualisa-

tion (NFV) as a solution to ultra-flexible networks, meeting
the diverse expectations of post-5G networks. Decoupling
the data and the control plane in SDN and using cloud
computing technologies to virtualize, orchestrate, and scale
the entire class of network functions to realize services in
NFV are indeed inevitable in modern networks [1].

Service placement represents one of the most important
steps in NFV. It tackles the allocation of physical
resources for network services, demanding heterogeneous
resources with specific Service Level Agreement (SLA)
constraints. In [2], the VNE placement problem is
proved as a NP-Complete problem by reducing the
Bin Packing problem to it. And it is encountered
in many research areas and use-cases of post-5G
networks, ranging from VNF Forwarding-Graph (VNFFG)
placement and Network Slicing, to virtualization of the

Core Network (CN), Content Delivery Network (CDN),
Internet of Things (IoT), and more [3].

The placement of services is carried out according to
many objectives. These objectives are addressed as an opti-
mization problem, subject to various constraints including
the resources, Quality of Service (QoS) requirements, and
other constraints that are specific to the objective and
the context. Resource optimizations, QoS optimizations
(e.g., latency, availability, reliability, security), energy
consumption, Revenue to Cost (R2C), and SA are among
the well-studied objectives [4]–[7]. We are particularly
interested in SA. SA is defined as the maximum number of
services that can be placed successfully over the network
subject to the resources and QoS requirements.

In [8], we addressed the problem of the online placement
of services by proposing the basics of our BnB-based
approach, enabling us to apply different AI search strategies.
We demonstrated how to obtain optimal results (the distin-
guishing advantage of ILP-based placement methods) while
maintaining the scalability of a heuristic-grade placement
strategy.

In this paper, we extend our previous work in several
aspects. We realized that, along with obtaining optimal
results to maximize service acceptance, network fragmen-
tation is a critical issue hardly addressed in the literature.
Trying to mitigate this problem, we modified our approach
with the fair placement of network load to avoid fragmenta-
tion. The experiments not only confirm the effectiveness of
the used tweaks on the network defragmentation but also
show a significant improvement in terms of SA. In addition,
we noticed that the completeness of our node-based BnB
formulation was at stake. Accordingly, we proposed a
mixture of node-based and link-based formulations as a
solution. From the early stages, we were keen to compare
our approach with the offline optimal placement to see to
what extent our approach was close to the general optimal
solution. Consequently, we defined the mathematical model
of our problem as an ILP. Following our intuition, we
tried to solve our model using CG. Although we can find
the optimal placements significantly faster than the ILP,
scalability remains the major challenge in addressing our
problem following an exact resolution. Fig. 4 summarizes
the proposed approaches.

This paper is organized as follows. First, we explore the
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related works in Section II. We present our formulation of
the problem by an ILP and CG approach in Section III.
Next, we describe in detail our BnB approach in Section IV.
Then, in Section V we plunge into the evaluations to
investigate the effectiveness of our solution. Finally, we
conclude and mention the future directions in Section VI.

II. Related Work
Placement algorithms have been studied in the literature

for several years after the introduction of NFV. Placement
is a commonly encountered concept in NFV, with various
use-cases. These use-cases consider different categories of
the objectives, including service acceptance and revenue
to cost, to energy efficiency, security, resiliency, and avail-
ability.

Offline placement involves finding the global optimum
for placing a batch of services based on known service
requests and their requirements (i.e., in terms of resources
and QoS metrics). In online placements, we look for an
optimal placement (in terms of resources) of a single service
request as soon as it arrives. The search for the global
optimum is not possible in online placement because we
have no information about the requirements of future
demands. While finding a local optimum may appear
an easier problem to solve, its complexity is still very
high. In addition to the optimality, the growing need for
placing multiple services as quickly as possible over the big
networks exacerbates the situation.

A significant part of the placement algorithms involves
the exact resolutions, formulating the problem as a Mixed
Integer Linear Program and trying to solve it via solvers
and optimizers.

In [9], the authors aim to optimise the placement of
multi-constrained services, by considering the bandwidth
and the latency for the links, and different system resources
for the nodes on an edge-core star-based network topology
graph. Their objective is to maximise the number of placed
service requests, first by proposing an ILP resolution, and
then a heuristic. In an effort to ensure a fair distribution of
the resources, they considered the cost of using a resource
proportionate to the remaining capacity of the correspond-
ing node or link (i.e., the cost of using a resource on an
overloaded node/link is much more than an underloaded
node/link). The researchers then demonstrated that this
slight modification results in a more fair distribution of
resources and leads to an increase in the number of accepted
services.

Despite the optimality and ease of use of ILP-based
methods, they suffer from scalability issues. Note that
performing an exact resolution requires a long processing
time until obtaining an optimal solution, and it can only be
used for small network topologies. This limitation presents
a significant barrier in online placement scenarios with
real-time constraints.

When it comes to the scalability of approaches, heuristics
are often retained. Best-Fit or Decreasing First-Fit is one
of the most well-known and efficient placement heuristic,
which sorts the nodes and places the VNF over the node

containing the maximum amount of available resources
iteratively. [10] explores scalable and cost-efficient heuristic
algorithms, especially the Best-Fit algorithm, and it pro-
poses a multi-stage graph algorithm to find near-optimal
solutions in a scalable manner. They assumed that service
requests arrive randomly, considering a random life span
for each service. The services are comprised of 3 VNFs,
requiring random units of resources for VNFs and VLs. The
simulation duration is fixed to a time unit for each run,
investigating the execution time (including the scalability
of the Best-Fit and the Multi-Stage algorithms), acceptance
ratio, and average cost of the placement in terms of the
assigned resources.

Although, designed to obtain a solution in a reasonable
time frame, heuristics do not provide quality guarantees,
and the risk of getting stuck in local optimums is extremely
high.

Meta-heuristic and evolutionary algorithms are another
direction addressing the placement problem. In [11], a
genetic algorithm based approach is proposed. They com-
pared their results against the Best-Fit algorithm as
a baseline algorithm, and they achieved higher request
acceptance rates, stemming from more efficient resource
utilization compared to a baseline greedy algorithm with
a similar optimization objective.

Despite being powerful in escaping from local optimums,
they suffer from unpredictability, especially in terms of
execution time, which is extremely important in online
placement.

Advanced AI search mechanisms and recent develop-
ments in machine learning techniques, and particularly
Deep Reinforcement Learning (DRL), have gained lots of
attention due to their promising potential.

The authors in [12] explore the potential of DRL for
maximizing the number of accepted services, satisfying the
QoS requirements. They show that their DRL approach
can learn the non-linear relation between QoS metrics
and traffic, in order to be able to find better placements,
resulting in more accepted services. [13] tries DRL with
Relational Graph Convolutional Neural Networks (RGCN)
for maximizing the service acceptance. In [14], a DRL
approach utilizing Double Deep Q Networks is proposed
to reduce the rejection ratio of the service requests,
while improving the system’s scalability through an offline
training. A Q-Learning approach is investigated in [15],
trying to establish a compromise between scalability and
optimality in order to maximize the benefit of the service
provider. They could obtain near-optimal solutions in a
relatively short time, while considering the network load
balance.

Our work falls into the latter category, discovering the
potential of AI search strategies, in particular A∗. It is
worth specifying the position of our work among ML-
based approaches. In our contribution, we are able to find
optimal (in the worst case near-optimal) placements, while
aiming to be as scalable as possible. Whereas in ML-based
approaches, the methods are remarkably scalable (after the
training phase, the DRL-based approaches and the ML-
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based algorithms can generate results in one step), while
the target is to obtain the placements as close as possible
to the optimal and near-optimal results by exploiting novel
learning approaches. Furthermore, the approach we propose
is explainable, unlike neural network approaches which are
not. These are important differences between our work and
the recent ML-based approaches.

III. Model

In this section, we define our placement problem model,
and then we try to resolve this model by ILP and CG. The
obtained results are presented later on the experimentation
section.

A. The problem definition
The service placement problem consists in placing a

service in the form of a graph on a substrate network,
which is also described by a graph. Thus, a service graph
k ∈ K, where K is the set of services, is denoted by
a directed graph Hk = (Fk, Lk), composed of a set of
Virtual Network Functions (VNFs) Fk, connected via a
set of Virtual Links (VLs) Lk, accompanied with SLA,
reflecting the QoS requirements. A VNF f ∈ Fk requires
a subset of resources, here we consider CPU Cf , and each
VL l ∈ Lk connecting two VNFs requires an amount of
bandwidth Bl. Similarly, a Substrate Network (SN) is a
physical network represented by a directed graph G(V, E)
with its corresponding nodes V and links E. A node v ∈ V
has a capacity of resources, here we consider CPU denoted
by Cv, and a link e ∈ E has a bandwidth capacity denoted
by Be, as well as QoS metrics (here we consider latency).

The placement problem deals with finding mappings
of a service’s VNFs and VLs into network nodes and
network paths, respectively. The notations of the model
are summarized in Table I.

Table I
Notations

Name Description

G = (V, E) Substrate network
V Set of nodes of the network
E Set of links of the network

ω+(v) Outgoing neighboring nodes of v ∈ V
ω−(v) Ingoing neighboring nodes of v ∈ V

Be Bandwidth available on the directed link
from v ∈ Fk to j ∈ w+(v)

Hk = (Fk, Lk) Virtual graph of service k
Fk Set of VNFs to be placed for service k
Lk Set of VLs between the VNFs of service k

ω+(f) Outgoing neighboring VNFs of f ∈ Fk

ω−(f) Ingoing neighboring VNFs of f ∈ Fk

Bl Bandwidth requested between the two VNFs of
l ∈ Lk

Cf Computing resources requested by f ∈ Fk

Cv Computing resources available at v ∈ V
De Delay experienced on link e ∈ E
Dk Delay requested for service k ∈ K
Dl Delay requested between the two VNFs of l ∈ Lk

B. Compact formulation
Variables The ILP contains two sets of binary variables:

the first set, x, represents the routing decision, and the
second set, y, the service placement decision. More precisely,
the variable xl,k

e = 1 if the virtual link l of service k ∈ K
is using the link e with e ∈ E; and 0, otherwise. The
variables yf,k

v = 1 if the VNF f ∈ Fk of the service k ∈ K
is instantiated in node v ∈ V ; and 0, otherwise.

Constraints We consider the CPU as a node resource,
and the bandwidth as a link resource. In addition, in terms
of the QoS metrics, latency is considered for the links and
end-to-end latency for the entire service. Note that, our
approach does not impose any limitations for adding more
resource types or more QoS metrics for nodes, links, or
services. A VNF can demand a set of resources of different
types (e.g., CPU, GPU, RAM, storage, FPGA, etc.), which
can be provided by several network nodes. Consequently,
we consider two sets of capacity constraints:∑

k∈K

∑
l∈Lk

Blx
l,k
e ≤ Be, (1a)

which is the bandwidth capacity constraints of each link
e ∈ E; and ∑

k∈K

∑
f∈Fk

Cf yf,k
v ≤ Cv, (1b)

which is the CPU capacity constraint of each node v ∈ V .
First, we ensure that the VNFs of a service are only

deployed once throughout the network with the following
constraints: ∑

v∈V

yf,k
v ≤ 1 ∀k ∈ K, ∀f ∈ Fk. (1c)

Moreover, VNFs of the same service k ∈ K cannot be
deployed on the same network node v ∈ V , which is ensured
by: ∑

f∈Fk

yf,k
v ≤ 1, ∀v ∈ V, ∀k ∈ K. (1d)

For each service k ∈ K, we ensure the virtual link l =
(fi, fj) ∈ Lk flow conservation at each node v ∈ V with:∑

e∈ω+(v)

xl,k
e −

∑
e∈ω−(v)

xl,k
e = yfj ,k

v − yfi,k
v (1e)

Finally, we bound the end-to-end service latency. For
the sake of simplicity, we consider the sum of the latency
required by VLs as the end-to-end service latency, and the
sum of the latency provided by placed network paths with
the following constraints:∑

e∈E

De

∑
l∈Lk

xlk
e ≤ Dk ∀k ∈ K, (1f)

∑
e∈E

Dexlk
e ≤ Dl ∀k ∈ K, ∀l ∈ Lk. (1g)

Objective The objective function is defined as:

max
∑
k∈K

∑
v∈V

yf0,k
v , (1h)
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where f0 is the “first” function of the service. We only
need to count the number of “first” functions in the
objective since the flow conservation constraints ensure
that a solution contains no partial embedding.

Cuts An ILP solver’s performance depends on the
problem’s relaxation, i.e., the problem without integrality
constraints. It evaluates the nodes of its Branch and Bound
tree with the linear relaxation of the problem. If the linear
relaxation solution at the current node is worse than
the best integer solution found so far, it can prune the
node. The linear relaxation quality (the gap between the
integer and relaxation solution) significantly impacts the
resolution time since a good relaxation will lead to a faster
exploration of the tree. We can improve the lower bound
by devising cuts. These constraints are not necessary for
the correctness of the model as they are implicitly satisfied
by the constraints of the base integer model, but they are
usually violated in the relaxed version of the problem.

This formulation has a poor relaxation, however, we can
improve it by exploiting the one VNF per node constraint.
Since nodes can host only one VNF of the same service,
we can define the minimum amount of bandwidth used
by each service. For example, let’s consider a daisy chain
service graph with 3 VNFs (F1, F2, and F3), and 4 VLs
connecting F1 to F2, F2 to F1, F2 to F3, and F3 to F2. If
each VL would require 1 unit of bandwidth, at least, we
require four units of network bandwidth. In mathematical
form, we can express the minimum bandwidth usage as:∑

k∈K

∑
v∈V

∑
l∈Lk

Bl,kyf0,k
v ≤

∑
e∈E

Be. (1i)

C. Embedding Decomposition
The previous formulation lacks scalability. To solve larger

instances, we need to use decomposition methods. These
methods are popular tools to make scalable ILP-based
algorithms and they also provide higher bounds to evaluate
the solutions.

Multiple decompositions are available. We focus on the
embedding decomposition, where each variable represents a
possible embedding of the service onto the physical network.
This decomposition shines when multiple services share
the same configuration (same bandwidth, same number
of CPUs, and same latency requirements) as they can
share the same embedding and we can easily compute the
resource allocation.

Because the number of embeddings is exponential, an
embedding-based formulation would require an exponential
number of variables (columns). However, a solution only
contains a few of them. To generate only useful columns, we
use the CG algorithm [16]. The algorithm solves large-scale
linear programs via a back-and-forth resolution of a master
problem and one or multiple pricing problems. Starting from
a reduced master problem, the master problem feeds dual
values to the pricing problems, and the pricing problems
feed improving columns to the master problem. For each
service k, we need to generate an embedding γ among all
possible embeddings Γk for the service k.

1) Master problem: We only need the set of variables
zkγ ∈ N to indicate the number of services k allocated
on the embedding γ. Each embedding γ is defined by
the amount of bandwidth it uses on each link e, denoted
by δe(γ), and the number of CPUs used on each node v,
denoted by θv(γ).

We ensure that, for each service k ∈ K, we do not embed
more services than requested with the following constraints:∑

γ∈Γk

zkγ ≤ nk, (2a)

where nk is the number of requests requiring the same
service k.

For each link e ∈ E, we define its capacity constraints
as: ∑

k∈K

∑
γ∈Γk

δe(γ)zkγ ≤ Be, (2b)

And for each node v ∈ V , we define its capacity
constraints as: ∑

k∈K

∑
γ∈Γk

θv(γ)zkγ ≤ Cv. (2c)

Finally, the objective function is written as:

max
∑
k∈K

∑
γ∈Γk

zkγ . (2d)

2) Pricing problems: Each service k has its own embed-
ding sub-problem. The problem is similar to the compact
formulation, so we reuse the same notations for the
variables.

• xl
e ∈ {0, 1} indicates if the virtual link l ∈ Lk of the

service is routed through the physical link e ∈ E.
• yf

v ∈ {0, 1} indicates if the VNF f ∈ Fk of the service
is instantiated in node v ∈ V .

The first set of constraints ensures that each VNF ∀f ∈ F
is embedded on a physical node:∑

v∈V

yf
v = 1. (3a)

Unlike the compact formulation, we write these con-
straints as equalities to make sure that the service graph
is embedded.

The second set of constraints ensures that each node
v ∈ V can host up to one VNF of the service:∑

f∈Fk

yf
v ≤ 1 (3b)

We ensure flow conservation for each node v ∈ V and
each VL l = (fi, fj) ∈ Lk with the constraint∑

e∈ω(v)

xl
e −

∑
e∈ω−(v)

xl
e + yfi

v − yfj
v = 0. (3c)

The overall delay of the service is ensured with the
constraint: ∑

e∈E

De

∑
l∈Lk

xl
e ≤ Dk, (3d)

and the delay between each virtual link l ∈ Lk with the
constraint: ∑

e∈E

Dexl
e ≤ Dk (3e)
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3) Pricing objective function: The pricing problems feed
improving columns to the master problem. Improving and
non-improving columns differ in their reduced costs as the
reduced cost of a variable indicates the improvement of the
objective function if the variable enters the solution. The
goal of the pricing problem is to find the columns with the
best reduced cost. If all variables have a null reduced cost,
then the CG algorithm has converged.

We can obtain a variable’s reduced cost formula from
the dual of the master problem. If we define by π the
dual values corresponding to the constraints of the primal
problem (and let the exponent define the corresponding
constraint), the dual problem is formulated as follows:

min
∑
k∈K

nkπ
(2a)
k +

∑
e∈E

Beπ(2b)
e +

∑
v∈V

Cvπ(2c)
v (4a)

s.t. π(2a) +
∑
e∈E

δe(γ)π(2b)
e +

∑
v∈V

θv(γ)π(2c)
v ≥ 1

∀k ∈ K, ∀γ ∈ Γk (4b)

Columns in the master problem become constraints in
the dual problem and are also in exponential numbers.
Similarly to the CG algorithm, the row generation algo-
rithm starts from a reduced problem and searches for any
violated constraints. Given a dual solution π̄, the separation
problem of the dual searches an embedding that violates
constraints (4b), or in other words, any embedding γ such
that

π̄(2a) +
∑
e∈E

δe(γ)π̄(2b)
e +

∑
v∈V

θv(γ)π̄(2c)
v < 1. (5)

Going back to the embedding sub-problem for a given
service k, defined by constraints (3), the objective function
becomes

min
∑
e∈E

π̄(2b)
e

∑
l∈Lk

Blxel +
∑
v∈V

∑
f∈Fk

Cf π̄(2c)
v yvf . (6)

If the optimal value of this problem is strictly less
than 1 − π

(2a)
k , we know that adding the corresponding

embedding into the master problem will improve the
solution. Otherwise, no embedding can improve the master
problem.

IV. Proposed Solution
So far, we tried to address the placement problem using

ILP and CG. The evaluations in the experiment section
show that, although CG performs pretty well on small
graphs of the services and the networks, it is not scalable
for bigger graphs. This is where our solution plays its role.
For simplicity, we use network and service to refer to the
topology graphs of the Substrate Network and the Service
Request.

A. BnB-Based Service Placement
BnB is one of the most popular paradigms of algorithm

design used for solving combinatorial optimization prob-
lems with exponential complexity.

N1 N2

N3 N4

F1 F2 F3

Service Graph Network Graph

Pruned branches that 

violate constraints

Complete placements (terminal states)

N1 N2 N3 N4

N1 N2 N4N3

N1 N2 N3 N4

Depth 0 (Root)

Depth 1 (Placing F1)

Depth 2 (Placing F2)

Depth 3 (Placing F3)

Branch-and-Bound Search Tree

Figure 1. A sample BnB search tree, placing a service with 3 VNFs
over a network with 4 nodes

BnB allows a complete search over the feasible solution
space and avoids progressing in unfeasible branches by
pruning the tree. We propose a BnB approach over a search
tree (Fig. 1). To differentiate it from a network node, we
designate a node of the search tree as a state. Each state
carries placement information, as well as a complete image
of the network (remaining resources). If a state gives the
complete placement, we say that it is terminal.

1) Generating Search States: Starting at the root state of
the tree, we select a VNF from the service and we generate
a corresponding sub-state (a parent-child relationship) for
each network node that can provide the required resources.
Each state contains a complete image of the network, i.e.,
the remaining resources after placing the VNF over the
corresponding node. Once a VNF is placed, we can place its
outgoing and incoming VLs if both of their end-points are
placed. In that case, we search for one of the shortest paths
between both end-points to embed the VL, considering the
required bandwidth and latency.

2) VNFs’ selection order: The search tree evolves by con-
tinuing to select a VNF from the service and then placing
it over the network nodes, generating their corresponding
sub-states. To decide which VNF to be selected in each
step, we use the depth of the corresponding state and an
ordered list of the VNFs of the service. In order to generate
the list of VNFs, we traverse the service in Breadth-First
Search (BFS), starting from the entry point (“first” VNF)
of the service. Traversing in BFS allows us to have a partial
placement of a connected sub-graph of the service on each
state, making it possible to be evaluated against constraint
violations. The root state of the search tree is located at
depth zero, so the states of the first depth contain partial
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placements of the first VNF of the list. Consequently, the
last VNF of the list is placed by the states of the last
depth. Thus, if we are placing a service with N number
of VNFs over a network with M number of nodes, the
depth of the search tree would be N , and the maximum
branching factor would be M . Note that our solution does
not impose any constraints for sharing a previously placed
network function between services. In case we want to share
and use exclusively an already placed network function of
the same type of the currently placing VNF (whether it
is a PNF or a VNF). Since the already placed network
function has a known network location (network node),
the other branches corresponding to other network nodes
are pruned (there are several works considering the VNF
sharing, like [17]).

As it is shown in this figure, the branches are pruned
because of a violation of constraints like:

• Not being able to provide enough node resources for
the current VNF

• Not being able to find a path for the VLs connecting
the currently placed and already placed VNFs because
of the lack of the bandwidth

• Not being able to find a path that could satisfy the
overall E2E latency requirement of the service

• Having placed the current VNF over a network node
that we already placed another VNF of the same
service over that node (VNE constraint)

3) Search Strategy: After expanding the root state
(generating all of its sub-states), we continue the search
by selecting and expanding the states until we succeed
to find a terminal state, or we fail by reaching a timeout.
When we expand a state, we evaluate the sub-states against
the constraints, and then we store them in an ordered
list called the fringe (we do not add the violating states
to the fringe, i.e., they are pruned from the tree). The
next state to be expanded is chosen from the head of
the fringe. The sequence of the states kept in the fringe
specifies the direction of the search and it is determined by
a search strategy. A search strategy specifies a traversal over
the search tree (the order of visiting the states) through
the fringe. The fringe can either be a queue (e.g., in
BFS), a stack (e.g., in Depth-First Search (DFS)), or an
ordered list (e.g., in A*). Our ultimate goal is to investigate
the influence of applying various search strategies on the
objective of SA (i.e., the maximum number of service
requests that can be accepted). Accordingly, we will propose
several search strategies.

B. Node-Based vs. Link-Based BnB
Until now, we tried to explain the structure of our BnB

by focusing on a node-based placement approach. The
states represented the possible placements for the VNFs
over the nodes, while the VLs were placed in a known order.
Since all of the network nodes are considered candidates
for placing each VNF, we might think that the order of
placing VNFs does not violate the completeness of our
BnB (completeness guarantees to return a solution if at

F2 F1 F3
VL1 VL2

(a) Service

N1 N2

N3N4N5

(b) Network

F1

F2 F3

P1 P2
P3

P4

(c) Possible placement.

Figure 2. The need for the link-based placement approach

least any solution exists). But fixing the order of placing
VLs and not considering the other possible sequences might
violate the completeness. That is to say, it is possible to
fail to find any placement (when all of the branches are
pruned and we can not reach a terminal state), while we
could have found a placement only by considering another
order of placing VLs. Although this occurs only when the
resources are scarce, it might happen.

The mentioned problem is illustrated in Fig. 2, in which
we try to place a service (Fig. 2a) over a network (Fig. 2b).
As shown in Fig. 2c, we have placed F1, F2, and F3 over
N1, N5, and N3, respectively. Suppose that we decided
to place VL1 before VL2. We have two options to place
VL1 (i.e., over the path of P1 or P4.). We will choose P1
since it is the shortest path. Suppose that, by placing VL1
over P1, we use up the entire available bandwidth of the
network link connecting N4 to N1. To place VL2, since
the network link connecting N4 to N1 is taken by VL1, we
cannot place VL2 on P2, but it is possible on P3 since it is
available. Now suppose we decide to place VL2 first, and we
decide to place it on P2 (both P2 and P3 are shortest-path
candidates). Accordingly, if VL2 uses up the entire available
bandwidth of the network link connecting N4 to N1, we will
have to place VL1 over P4, which uses significantly more
bandwidth and may violate latency requirements, leading
to placement failure. By adopting a similar approach and
redefining the BnB structure on links instead of nodes, we
can consider all possible sequences of VLs placement.

C. A∗ Based Search Strategies
1) A* Bandwidth Optimized (ABO): In ABO, we use

A∗ algorithm by concentrating on bandwidth usage opti-
mization. A∗ is amongst the most popular AI informed
search algorithms due to its completeness, optimality, and
optimal efficiency. It is considered the best solution for
many problems in computer science. A* traverses the search
tree according to f -costs, which for an arbitrary state
of n is calculated by the sum of a cost function and a
heuristic (f(n) = g(n) + h(n)). The states are stored in a
list called fringe, an ordered list based on the f -costs. f is
an estimation of the cost of an optimal solution from the
root to a target state, the heuristic function h estimates
the cost of an optimal solution from the current state to
a target state, and g is the real cost of the path from the
root to the current state. The optimality and completeness
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Figure 3. Illustration of the triangle inequality

of A* are proved if we choose an admissible and consistent
heuristic function [18].

A heuristic that estimates the cost of the placement can
be defined as the cost of placing each unplaced VL over
a path containing exactly a single network link (since we
need at least one network link to accommodate each VL).
So, we consider the total amount of required bandwidth
by all of the unplaced VLs as h, and g represents the total
amount of bandwidth used for all of the placed VLs.

Theorem 1. Our heuristic function is admissible.

Proof. A heuristic function is admissible if it never overesti-
mates the cost to the target state, as demonstrated in [18].
If we can place the source and destination of a VL over
two adjacent network nodes, the cost of placement will be
equal to what our heuristic estimates. Otherwise, we need
a path of several links to accommodate a VL, which means
the cost would be more than what our heuristic estimates.
Thus, our heuristic never overestimates the cost to the
target state, so our heuristic function is admissible.

Theorem 2. Our heuristic function is consistent.

Proof. A heuristic function is consistent if the f -cost never
decreases along a path from the root state to any arbitrary
state as demonstrated in [18]. If n′ is a successor state of
n and c is the cost of placing unplaced VLs on n that are
already placed on n′ (c = g(n′) − g(n)), we need to prove
the triangle inequality of h(n) ≤ c + h(n′), as illustrated in
Fig. 3. We label the estimated cost of transition from n to
n′ as c′ (h(n′) = h(n) − c′). Knowing that the estimated
cost of placement on n′ is less than the estimated cost on n
(since we have fewer unplaced VLs on n′), we just need to
prove that c′ ≤ c. Since our heuristic does not overestimate
the cost, this inequality is always true, i.e., our heuristic is
also consistent.

By proving Theorem 1 and Theorem 2, we can tell
that our A∗ search is complete and optimal. Note that,
the optimality guarantees that if A∗ succeeds to find a
placement, no other placement exists using less bandwidth
than the found one.

2) Fair A* Bandwidth Optimized (FABO): Along with
the optimality, increasing the chances of accepting new
service requests is also important to consider. Network
fragmentation is one of the critical obstacles encountered
during the placement. It can happen when the placement
algorithm tends to place new service requests over the same
nodes and links as long as they can provide the required

resources, resulting in too many disconnected sub-networks.
It is even more likely to happen if the algorithm is optimal
and deterministic.

Fortunately, network fragmentation can be reduced by
taking into account the relevant considerations in the
placement algorithm. FABO is another search strategy
that tries to address network fragmentation. On the one
hand, it tries to avoid network fragmentation by sorting the
states of the fringe according to the number of disconnected
sub-networks (having at least two network nodes). On
the other hand, it tries to make a fair distribution of the
load over the network links by sorting the states of the
fringe based on the variance of the remaining bandwidth
of the network links. In a nutshell, the fringe is sorted with
multiple criteria. The first criterion is the f -costs since
FABO is defined on top of the optimal ABO. The second
is the number of disconnected sub-networks, and the last
one is the variance of the remaining bandwidth.

D. DFS-Based Search Strategy
Search strategies, regarding their types of traversal, are

generally categorized into two classes: BFS-based and
DFS-based. Note that BFS-based strategies include all
of the traversals along with the breadth or a cost function,
regardless of being informed or uninformed (therefore, ABO
belongs to this category). DFS-based strategies traverse
along with the depth of the search tree in order to quickly
reach the terminal states. DFS Bandwidth Optimized
(DBO) is another strategy that allows us to obtain high-
quality near-optimal placements as fast as possible. In DBO,
the fringe is a stack. The search tree evolves by popping a
state from the fringe, expanding the state, sorting the sub-
states by the amount of used bandwidth (g-cost), and then
pushing back the sub-states into the fringe, until reaching
a terminal state.

E. Best-Fit-Based Search Strategies
Best-Fit (BF) is one of the most well-known heuristic

algorithms for service placement. BF sorts the nodes and
places the VNF over the node containing the maximum
amount of available resources. The placement fails to place
a service as soon as it could not find any node to provide
the required resources of a VNF of the service.

Looking for a way to see to what extent we can improve
and benefit from the BF, we imagined the possibility
to revise the previously placed VNFs. Consequently, we
realized that our BnB structure is a perfect fit to put
our idea into practice. By tweaking the DBO to sort the
generated sub-states according to their amount of available
node resources, instead of the used bandwidth, we can
obtain another proposed search strategy called Enhanced
Best-Fit (EBF).

F. Parallel Integrated Search Strategy
To maximize service acceptance, it is inevitable to

minimize service rejection. Finding optimal placements and
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preserving the resources as much as possible is necessary,
but being unable to find an optimal placement within
the time constraint, leading to service rejection, is not
coherent with our objective. Therefore, it is essential to
have backup strategies to find near-optimal placements
as fast as possible. To escape from service rejection, we
need to try multiple strategies. Parallel execution of the
strategies allows each strategy an equal opportunity over
time. Parallel Integrated (PI) is another search strategy
that does not define a specific traversal, but it combines
other strategies in order to obtain the best results in terms
of service acceptance. In PI, we execute FABO, ABO, and
DBO in parallel and wait until they finish (whether they
succeed or reach the timeout). If multiple strategies succeed
to find the placements, the one with the best quality is
selected, i.e., the placement which is found by FABO is
preferred over the one found by ABO, and similarly, ABO’s
result wins over DBO’s.

V. Experimentations

A. Parameters and Steps of Evaluation

The evaluations are executed on a system with an Intel
Core i7-3687 CPU and 8GB of RAM. Our implementations
are made in Java and run on Windows 10. We set a timeout
of 2s for placing a service in all of our evaluations (i.e., if
a strategy can not find a placement within the timeout, it
fails).

We perform our evaluations over the BT-Asia-Pacific,
BT-Europe, and BT-North-America network topologies,
selected from the Zoo Topology dataset [19], with respec-
tively 20, 24 and 36 nodes, and 62, 74 and 152 bi-directional
links. We consider daisy chain, ring, and star topologies for
service graphs having 3 to 10 VNFs and bi-directional VLs.
Each VNF requires a single unit of CPU and a single unit
of storage, and each VL requires from 1 to 10 bandwidth
units. We use the SAMCRA [20] routing algorithm to place
a VL over a network path while considering QoS metrics.

Our evaluation begins by initializing the network
nodes/links with their maximum available resources. Then,
iteratively, we generate service requests one by one based
on the specified topology, size, and requirements. Then, we
try to place them using the specified strategy within the
timeout. On each iteration, if we find a placement for the
requested service, we apply the placement over the network
by reserving its required resources, and then we start a
new iteration. Otherwise, we terminate the evaluation and
report the number of services successfully placed.

B. Assumptions

To compare our strategies, we will introduce some
assumptions that are not required for real scenarios but to
highlight the behavior of the strategies.

1) No constraints for QoS metrics: The QoS metrics
are systematically considered in the BnB tree construction,
ensuring the absence of QoS violation.

2) No constraints for node resources: To illustrate the
impact of node resource limitation on the placement
strategies, we considered 10, 20, and 40 available units
of CPU and storage resources for each network node (as
our default configuration, we consider placing services with
daisy chain topology, considering VNFs requiring one unit
of CPU and storage for VNFs, and one unit of bandwidth
for VLs, over BT-Europe network). Fig. 5 shows that all
placement strategies act similarly when nodes have a small
number of resources. The effectiveness of the strategies
becomes clearer when network nodes have more resources.
Therefore, from now on, unless mentioned otherwise, we
consider an unlimited amount of CPU and storage for each
network node and 10 units of bandwidth for each network
link, at the beginning of the evaluation.

3) Placing VNFs of a service on separate network
nodes: We respect the constraint of the Virtual Network
Embedding (VNE) problem (anti-affinity), which does not
allow placing any two VNFs of the same service over a
single network node. Affinity and anti-affinity rules in
cloud-computing provide a mechanism for establishing a
trade-off between performance and reliability of the realised
service. Affinity asserts putting VNFs on the same network
node for increasing inter-networking performance. While,
anti-affinity is used to improve the reliability and the
availability by preventing certain VNFs of the same service
from sharing the same physical resources in order to reduce
the impact of a single network node failure [21]. Moreover,
not considering this constraint results in a remarkable
relaxation of the placement problem, so that the different
strategies can place almost the same number of placements.
The anti-affinity is often partially considered in a service.
Since, placing a single VNF over a single network node does
not make a major difference in terms of the complexity in
comparison to placing a group of VNFs (that need frequent
communications) over a single node, here we consider anti-
affinity for all of the VNFs of the service.

C. BF vs. EBF
Fig. 6 shows that we can place on average almost 3

times more services with EBF, compared to BF. We tried
to place daisy chain services with different sizes over the
BT-Europe network.

D. The Advantage of Integrating the Strategies
To evaluate the integration of strategies, we can imagine

a strategy that executes DBO after ABO fails to find an
optimal placement (we call it ADBO). Table II shows
the number of placed services, and the percentage of
the total remained network bandwidth at the end of the
placement for ABO, DBO, and ADBO strategies. In general,
ABO places more services and can save more remaining
bandwidth. But, for services with 8 VNFs, although ABO
saves a significant amount of bandwidth (43.24% vs. 7.03%),
it places fewer services (30 vs. 38). Here, ABO fails to find
an optimal placement within the time limit, and optimality
is sacrificed for time, while, their combination (ADBO)
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Table II
The Advantage of Integrating the Strategies

Size # of Placed Services % of Remained BW
ABO DBO ADBO ABO DBO ADBO

3 180 173 180 2.7 2.1 2.7
4 115 101 115 5.4 9.4 5.4
5 78 78 78 13.5 8.3 13.5
6 60 57 60 18.9 12.9 18.9
7 55 46 55 6.7 12.1 6.7
8 30 38 39 43.2 7.0 17.5

places more services and leaves the remaining bandwidth of
17.5%. The time restrictions on online placement argue for
the integration of strategies to minimize service rejection.
Accordingly, we introduced PI by parallel integration of
FABO, ABO, and DBO.

E. Service Acceptance
Extensive evaluations were performed. Considering 10

different values of VL bandwidth requirement, 3 types of
service topologies, 8 service graph sizes, and 6 strategies,
we performed 4320 evaluations (1440 evaluations for each
of the three network topologies). The results confirm that
PI is almost always superior to the other strategies, making
us able to measure them all against PI (Table III). We
used quartiles (Q1, Q2 (Median), Q3) as well as min-avg-
max, in order to represent the results. For example, an
improvement of 494% on average means that PI places
5.94 times more services in comparison to BF considering
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Table III
Service Acceptance Improvements, gained by using PI instead

of other strategies (%)

Strategy Q1 Q2 Q3 Min Average Max
FABO 0 19 50 0 115 3800
ABO 0 15 33 -14 26 300
DBO 12 27 50 -14 150 4800
EBF 100 112 173 0 208 2400
BF 217 325 600 90 494 2400

Table IV
Evaluation of the PI strategy with the ILP and the CG

algorithm

Size ILP CG & BnB PI Strategy
# Time # Time # Time

3 185 757 185 6 185 30
4 123 1857 123 22 121 29
5 92 12567 91 71 90 26
6 - - 73 246 72 28
7 - - 60 571 59 31
8 - - 49 1113 47 29

the same evaluation parameters. Beyond these satisfactory
results in terms of average, the max column shows that PI
can place 25 to 49 times more services, while the placement
problem becomes so complicated that DBO and EBF could
not find any placement or found only 1 or 2.

F. The ILP and CG Results
We compare, in Table IV, the PI strategy with the offline

solutions provided by the ILP and the CG algorithm. Both
mathematical formulations were solved using the Gurobi
solver. Solving the ILP becomes more difficult as the size
of the services increases; it takes more than three hours
to find the optimal solution for daisy chains of size 5. For
larger instances, we rely on the CG algorithm to provide
the solution and its upper bound. We see that our PI
strategy finds close-to-optimal solutions, with an average
gap of 2%.

Note that we can’t expect an online placement solution
like PI to reach the global optimum of the offline problem.
It should also be noted that PI achieves this performance
while keeping the computation time around 30s. Even
though the CG algorithm shows better scalability, it still
needs about 20 minutes to find a solution for daisy chains
of size 8.

Furthermore, we were interested to see to what extent our
placements found by the PI strategy are optimal. Note that
the placements found by FABO and ABO are guaranteed to
be optimal, but the ones found by DBO are not necessarily
optimal. By performing a complete evaluation over the BT-
Europe network, we witnessed that 89% of the placements
were found by FABO and ABO, indicating that at least
89% of the placements are optimal.

Fig. 7 depicts a general comparison between different
strategies except for PI. The behavior of the PI strategy
depends on the timeout. In fact, by considering a very
short period as a timeout, the PI strategy acts like DBO;
by considering longer periods, it acts like ABO; and if we
give it enough time, it acts like the FABO strategy.

Table V
Evaluation of the other strategies

Size ABO DBO EBF BF
# Time # Time # Time # Time

3 185 1.8 173 0.9 82 0.4 44 0.2
4 106 1.8 102 0.7 58 0.4 26 0.2
5 82 1.4 78 0.6 43 0.4 26 0.3
6 61 3.8 58 0.5 32 0.5 17 0.2
7 52 3.5 46 0.5 25 0.4 19 0.2
8 31 3.6 37 0.5 20 0.4 13 0.2
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A* + Fairness
Optimal

Offline
Optimal

Figure 7. A general comparison between different strategies

The execution time of the other strategies are shown in
Table V for more information.

G. Fair-Placement and Network Defragmentation
Up to this point, we have considered a fixed size for

the service requests during an evaluation. Yet, in reality,
the arriving service requests can contain different amount
of VNFs and VLs with different resource requirements.
We try to generate random services, and to guarantee the
reliability and the repeatability of the results, we perform
this scenario many times with different seeds of randomness
(trying to perform Monte Carlo experiments [22]). Since
the number of placed services (our random variable) is
bounded (because our resources are limited), we can rely
on the convergence in terms of the average of the outcomes
of our random experiments. In each random experiment, we
start with generating a daisy chain service with a random
number of VNFs (with a uniform distribution) in a range
of [3, 8], and continue placing them, until the specified
strategy fails.

We want to compare the PI strategy, which performs
a fair placement and avoids network fragmentation, with
the ABO strategy, which only performs optimal placement.
Fig. 8 represents a single random experiment over the
BT-North-America network. The number of created sub-
networks confirms the effectiveness of PI, not only in
keeping the network’s integrity until almost the end of
the simulation but also in its capability to place more
services than ABO.

If we take the sequence of the number of sub-networks
on the experiment related to the Fig. 8 as we continue
placing the services over the network, the average of this
sequence will be 3.09 for ABO, and 1.06 for PI strategy. We
performed 100 random experiments, with different seeds
of randomness for each of the strategies and for all of
our three networks. Fig. 9 shows the min-avg-max over
the average number of sub-networks during each random
experiment. The average obtained using ABO on BT-Asia,
BT-Europe and BTN-America is 1.18, 1.38 and 1.82 (note
that it increases according to the size of the network), while
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it is 1.02 using PI over all of the results obtained for all
these networks.

The number of placed services in 100 random experi-
ments over the BT-Europe network is represented in Fig. 10.
Fig. 11 demonstrates the cumulative average of the results
of Fig. 10. The superiority of the PI strategy can be
witnessed not only by the convergence of the cumulative
average of PI towards 80.5 (95% confidential interval with
0.9% margin of error) and ABO to 68.4 (95% confidential
interval with 1.7% margin of error) but also the fact that
PI could almost always place more services than ABO
considering each random experimentation.

H. Comparison with ML-Based Approaches
The authors in [12] propose a DRL-based approach for

maximizing the SA, considering the QoS requirements.
They compare their results with similar configurations as
our approach (like using Bt-Europe topology and similar
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in each random experiment

resources), with the First-Fit (FF) algorithm (FF is a
simplified version of the BF algorithm, in a way that it does
not sort the network nodes before placing each VNF). They
defined the possible states, the actions and the rewards for
the agent of the DRL to find the placements for the VNFs
of a service. They used Deep Deterministic Policy Gradient
(DDPG) in order to enhance the performance of DRL
agent. They demonstrated almost 30% of improvements
in the number of accepted services in comparison to the
FF algorithm. [13] is another work proposing DRL and
with RGCN for maximizing the service acceptance, and
they showed almost 20% of improvements in the number
of accepted services in comparison to the BF algorithm.

In ML-based approaches, we make the placements in two
phases. At first, we train our model by the making random
placements to let our agent learn to maximize the number of
placements. Then, we evaluate our model to see how many
placements it can make. Although the obtained results of
the this approach are not as good as the results of our
proposed approach. But, there are particular advantages
by using DRL. In fact, after the training phase, the DRL-
based approaches like all of the ML-based algorithms, we
can generate results super fastly, making it ideal for large
scale placement problems.

VI. Conclusions and future work
Although the VNF placement problem has been studied

for many years, the need for an approach that could find
a fair compromise between optimality and scalability still
exists. Recent advances in AI and ML techniques have
revolutionized many research domains. We proposed a
solution based on a BnB structure, adapting AI search
strategies, particularly A∗, capable of finding optimal
placements considerably fast. Substantial empirical analysis
has been made, and the results confirm a considerable
improvement (494% on average) in comparison to the
popular placement algorithm of Best-Fit.

As a downside of our A∗-based strategies, we could
mention the exponential memory complexity of O(bd) (b
stands for branching factor and d for depth). Yet, since
the online placement imposes a time constraint, we only
need to ensure that the search procedure will finish before
using up the entire memory, depending on the scale of
the network and the service. In addition, since there are
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effective algorithms like Simplified Memory Bounded A∗

(SMA∗) to address it, we do not consider it a significant
issue.

As a future direction, we are interested in the edge
networks, where the location of the service consumers
affects the service location. Besides, we are eager to see how
to adapt our approach to the edge and to the hierarchical
networks using, particularly, advanced ML techniques to
boost our approach.
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